Tantárgy adatlapja

Tárgy neve: Sport adatfeldolgozási módszerek haladóknak
Tárgy kódja: P_DO_0320
Óraszám: N: 2/2/2, L: 0/0/0
Kreditérték: 6
Az oktatás nyelve: angol
Követelmény típus: Gyakorlati jegy
Felelős kar: ITK
Felelős szervezeti egység: ITK Doktori és Habilitációs Iroda
Tárgyfelelős oktató: Dr. Grand László Bálint
Tárgyleírás:

Description of the subject:

This advanced-level course focuses on the processing, analysis, and modeling of sport and rehabilitation data using state-of-the-art data science methodologies. The course blends theoretical foundations with practical applications, emphasizing real-world data sets from wearables, motion capture systems, and clinical rehabilitation monitoring tools. Students will apply statistical models, machine learning, and deep learning to extract insights from time-series and biomechanical data. Emphasis is placed on the design and implementation of personalized sport-performance tracking systems, injury prediction, recovery modeling, and performance forecasting.

Planned weekly schedule/topics (indicative):

  1. Introduction to Sport Data Ecosystems and Ethics
  2. Advanced Sensor Technologies in Sports & Rehabilitation
  3. Signal Processing for Biometric and Kinematic Data
  4. Time-Series Analysis and Dynamic Modeling in Sports
  5. Functional Human Anatomy Revisited (with application to modeling)
  6. Advanced Statistical Methods for Sports Data
  7. Feature Engineering from Wearable and Movement Data
  8. Machine Learning for Performance Optimization and Injury Risk Assessment
  9. Deep Learning Architectures in Sport Applications (CNNs, RNNs, Transformers)
  10. Computer Vision in Sports: Pose Estimation and Action Recognition
  11. Complex Systems and Network Dynamics in Team Sports
  12. Multimodal Data Integration (EMG, ECG, GPS, Video)
  13. Building End-to-End Sport Analytics Pipelines
  14. Sport Forecasting Models and Decision Support Systems
  15. Final Project Presentations and Case Studies

List of required and recommended literature:

  1. Thomas W. Miller – Sports Analytics and Data Science: Winning the Game with Methods and Models, Pearson, ISBN: 9780134193886
  2. Mark Powell – Sport Technology: History, Philosophy and Policy, Routledge, 2017, ISBN: 9781138844321
  3. László Grand et al. – Deep Learning for Movement Analysis (lecture notes, downloadable)
  4. Wilkerson et al. – “Machine Learning for Injury Risk Prediction in Athletes”, Journal of Sports Sciences, 2020
  5. Open-access datasets and publications from the MIT Human Dynamics Lab and FIFA Innovation Programme

List of required and recommended skills:

  1. Application of machine learning and deep learning in real-world sport scenarios
  2. High-level data processing and signal interpretation from multiple biosensor types
  3. Ability to analyze and model complex dynamic systems (e.g., team play, recovery models)
  4. Integration of anatomical knowledge into predictive and diagnostic modeling
  5. Development of end-to-end analytic pipelines for applied sport and rehab contexts
  6. Scientific thinking, interpretation of literature and data for practical innovation

 

A tárgy az alábbi képzéseken vehető fel

Roska Tamás Műszaki és Természettudományi Doktori Iskola képzése IDNI-IMTX Doktori képzés (PhD/DLA) (Nftv. 114 (2)) Nappali magyar 8 félév ITK
Roska Tamás Műszaki és Természettudományi Doktori Iskola képzése IDNI-AIMTX Doktori képzés (PhD/DLA) (Nftv. 114 (2)) Nappali angol 8 félév ITK
Széchenyi 2020 - Magyarország Kormánya - Európai Unió, Európai Regionális Fejlesztési Alap - Befektetés a Jövőbe